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We investigate the dynamics of bursting behavior in an intact hippocampal preparation using causal entropy,
an adaptive measure of lag synchrony. This analysis, together with a heuristic model of coupled bursting
networks, separates experimentally observed bursting dynamics into two dynamical regimes, when bursting is
driven by �1� the intranetwork dynamics of a single region, or �2� internetwork feedback between spatially
disjoint neural populations. Our results suggest that the abrupt transition between these two states heralds the
gradual desynchronization of bursting activity. These results illustrate how superficially homogeneous behavior
across loosely coupled networks may harbor hidden, but robust, dynamical processes.
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INTRODUCTION

Synchrony is observed in a wide range of physical and
natural systems. It is thought to play an important role during
information processing in the brain and at the same time
underlies one of its major dynamical diseases—epilepsy. One
of the more important issues in study of synchrony is the
deduction of the causal relationships between synchronized
events, in order to characterize the dynamics of spatially dis-
tributed systems. To achieve that goal, multiple methods
have been constructed based on phase space reconstruction
�1�, state space properties �2–5�, information transfer �6,7�,
measurement of phase differences �8–12�, or the notion of
event synchronization �13�. Many studies have used these
methods in investigations of seizure onset with the goal of
seizure prediction �14–16�. Although both linear and nonlin-
ear techniques have been employed to study seizure localiza-
tion and propagation, fewer studies have examined the dy-
namics of seizure progression �17–24�.

Here we use the notion of lag stability during phase or lag
synchronization �25–27� to investigate the progression of
bursting dynamics observed in the intact ex vivo hippocam-
pus. We monitor evolution and stability of the lags between
the bursting events recorded at four different sites in the
hippocampus, using a measure that we have previously de-
veloped. We show that the driving pattern �monitored by the
time lag measurement between the bursts� between the dif-
ferent hippocampal regions evolves during the bursting dy-
namics. Initial stability of the leading region in the septal
hippocampus evolves into switching of the burst lead loca-
tion.

Furthermore, we show that the relative internal dynamical
properties of the recorded locations do not simply follow the
lead pattern. Initially, bursting at the site that exhibits the
highest degree of synchrony leads the bursting at other re-
gions. However, in time this pattern changes dramatically
and the regions with a lesser degree of synchrony lead the
bursting dynamics. To better understand this dramatic change
we study the dynamics of a heuristic model of two intercon-
nected networks composed of integrate and fire neurons. We
show that this model captures the basic dynamical features

observed experimentally and allows us to explain the lead
switching taking place in the hippocampus. Our simulation
results indicate that the lead switching heralds the end of
bursting dynamics in the network as the slow dissolution of
the seizure commences.

I. MULTISITE RECORDINGS OF BURSTING ACTIVITY

Hippocampi of C57/BL6 mice �P8-P25� were isolated in
accordance with Canadian Animal Care Guidelines and per-
fused with low-Mg2+ artificial cerebrospinal fluid �ACSF� to
induce bursting activity �28�. Local field potential recordings
were made from the CA1 layer of the hippocampus with a
four-channel multiple electrode array with an interelectrode
distance of 300 �m and an interpair distance of 1500 �m
�Fig. 1�a��. Data were acquired using an eight-pole Bessel
low-pass filter �700 Hz� and digitized at 2 kHz. The resulting
recordings display intermittent episodes of sustained bursting
�seizure-like events �SLEs��, with coincident bursts recorded
on all four electrodes. A single SLE recorded at four sites is
illustrated in Fig. 1�b�. To extract interburst interval informa-
tion from recordings of hippocampal local field potential,
burst event times are isolated from the recording by low-pass
filtering at 10 Hz with a digital eight-pole Bessel filter, fol-
lowed by thresholding at 5% of the maximum deviation
above the mean �Fig. 2�b��.

FIG. 1. �a� Schematic of the explanted mouse hippocampus
showing the approximate placement of electrodes. �b� Representa-
tive local field potential recording of a single SLE from four posi-
tions in the hippocampus.
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II. DIRECTIONAL RELATIONSHIPS AND LAG
SYNCHRONY

To discern the dynamic relationship among the four re-
corded neural populations, we use a modified version of a
measure we have previously developed to assess temporal
interdependencies between two �29� or more �30� coupled
nonidentical dynamical units. The measure continuously
monitors the changes in the relative interburst intervals ��B�
between electrode pairs. The intervals are calculated sepa-
rately among events recorded on every electrode pair �i , j� in
the network and among all events recorded on a single elec-
trode.

In general, the interval �Bi,j of the time series i with
respect to the time series j is calculated as the time difference
between an event in j and the immediately preceding event
in i. The value of this interval is then assigned the time stamp
of the event in i. The interval �Bj,i of j with respect to i is
calculated similarly, with the value of each interval assigned
to the time stamps of events in j. The intervals �Bi,i are
calculated as the time difference between each sequential
event appearing on the ith electrode. Events are evaluated
sequentially in time. The time at which the originating event
of each interburst interval occurs is recorded, forming the

time series �Bi,j
t for each �i , j� �Fig. 2�a��. The asymmetric

relationship among two event series may be monitored by
studying the relative properties of �Bi,j

t and �Bj,i
t . If the sig-

nal i drives the signal j, then the events of j are likely to
follow those of i with a nearly constant lag, and the values of
�Bi,j

t will be tightly clustered. Conversely, if the signal j has
little driving influence over i, then the values of �Bj,i

t will be
widely distributed.

The difficulties of detecting true driving within coupled,
nonidentical dynamical systems have been discussed exten-
sively in Ref. �4�. In the study of recordings from neural
systems, it is possible that apparent driving relationships are
due to true driving by an unmeasured source. However, the
apparent driving relationships between two or more time se-
ries may still have utility insofar as they contain information
regarding the properties of the unmeasured, true source of
activity. Here, to avoid confusion, we will replace the notion
of “driving” with “leading” to reflect the limitations of our
observations.

The occurrence of asymmetric interburst interval distribu-
tions in the neuronal bursts is illustrated in Fig. 2�b� on a
burst-to-burst basis. While the bursts recorded on each elec-
trode are highly coincident, there is a temporal lag in the
activity recorded by different electrodes. Therefore, the val-
ues of �B1,2

t are on the order of 3–5 ms and display little
variability, while the values of �B2,1

t are over 350 ms, and
display high variability among bursts. Similar calculations of
�Bi,j

t are performed for �i , j�� ��1,2� , �2,3� , �3,4��.
The asymmetry in �Bi,j

t and �Bj,i
t distributions changes

over time, as illustrated in Fig. 2�c� �upper trace�. As recur-
rent bursting activity commences �black bar�, �B1,2

t is small
and has low variance, while �B2,1

t is larger and has higher
variance, indicating that the bursts recorded on channel 2 lag
those recorded on channel 1. Conversely, after a period of
rapid variation the values of �B2,1

t are small and have low
variance, while the values of �B1,2

t are large and have high
variance, indicating that the bursts recorded on channel 1 lag
those recorded on channel 2.

In order to quantify the distribution of �Bi,j
t through time,

we create a histogram with bins Il of equal width �T span-
ning the values of the �B time series for each �i , j�. This
histogram is updated continuously at the time when new
events occur on the electrodes i and j. Specifically, if a new
�B is generated such that l�T��Bi,j

tk � �l+1��T, then the
bin Il at the time tk will be updated so that Il

tk = Il
tk−1 +�P. All

bins I are then renormalized to a total weight of unity. Thus,
�T controls the sensitivity of the distribution to small differ-
ences in interburst interval �IBI�, and �P controls the degree
to which the interburst interval distribution takes into ac-
count early, as opposed to recent, events in the �B time
series �29�.

After each such update, the Shannon entropy S
=−�lIl ln Il, of the renormalized IBI distribution is calcu-
lated. We refer to it as a causal entropy of electrode i vs
electrode j at time tk �Ci,j

tk �. For simplicity of notation we will
suppress the time index, with the understanding that Ci,j re-
fers to the value of the causal entropy at a specific time.

Since the relative interburst intervals are measured unidi-
rectionally �Figs. 2�a� and 2�b��, the pairwise comparison of

FIG. 2. �a� General schema for calculating interburst intervals
��B� from two electrodes. �b� Expanded view of two consecutive
bursts recorded from two adjacent electrodes in the hippocampus,
demonstrating the calculation of �B from the data. �c� Upper panel:
Representative record of �B1,2

t and �B2,1
t over the course of a single

SLE. Lower panel: Record of Ĉ1,2− Ĉ2,1 �arb. units� calculated from
the �B time series above.
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Ci,j and Cj,i through time allows the asymmetric measure-
ment of temporal interdependencies between the activity at
two electrodes. To account for the possibility that the tempo-
ral interdependence between two signals could be an artifact
of autonomous temporal signal properties �e.g., frequency�
on one �or both� electrodes we calculate the quantity

Ĉi,j =
min�Ci,i,Cj,j� − Ci,j

min�Ci,i,Cj,j�
, �1�

where Ci,i is the entropy of �continuously updated� interburst
interval distributions observed on a single electrode ��Bi,i�.
Values of Ĉ around and below zero indicate that there is no
significant interdependence between the signals, whereas if

Ĉ tends to unity this indicates strong temporal interdepen-
dence. This measure detects and categorizes three basic re-
gimes: the lag-synchronous state is not achieved—the two

electrodes are independent �both Ĉi,j and Ĉj,i→0�; lag syn-

chrony is observed and electrode i leads electrode j �Ĉi,j

�0 while Ĉj,i→0�; and the equivalent state where j leads i;
the signal is nearly periodic or is completely synchronized

�both Ĉi,j and Ĉj,i�0�.
Changes in the relative values of Ĉi,j and Ĉj,i are most

easily visualized by the difference between these two quan-

tities. Ĉi,j � Ĉj,i indicates that �Bi,j is less variable than �Bj,i,
and therefore that activity in j is causaly related and system-
atically lags after activity in i. For example, the time series of

Ĉ1,2− Ĉ2,1 in Fig. 2�c� �lower trace� quantifies the trends in
�B1,2 and �B2,1 observed above. The activity in channel 1
initially leads that in channel 2, followed by a brief period of
lead switching, following which the activity in channel 2
stably leads the activity in channel 1.

In order to determine the significance of observed Ĉ val-
ues, we compute surrogate data sets by randomly reassigning
event times from each electrode to new electrode labels

�shuffled data set�. �B and Ĉ values are then computed from
these shuffled data sets. This procedure preserves the overall
frequency characteristics of the signals over time, while de-
stroying the fine, directional temporal relationships between

events recorded at each electrode. Thus, the distribution of Ĉ
values computed from shuffled data sets reflects the null hy-
pothesis that all four signals are autonomous, but possess
similar characteristics in the frequency or time domain.
Thresholds for significance are then based on the distribution

of �Ĉj,i+ Ĉi,j� and �Ĉj,i− Ĉi,j� over ten shuffled data sets
�Fig. 3�.

A. SLEs display a stereotyped pattern of lag synchrony

Events that fall outside the significance threshold for both

Ĉ sum and difference for each of the electrode pairs �i , j�
� ��1,2� , �2,3� , �3,4�� are depicted in a raster plot of indi-
vidual events and lag pattern �Fig. 4�a��. We found well-
defined temporal regions during every SLE when the pattern
of lag synchrony between electrodes is stable. Furthermore,
as illustrated within the depicted SLE, the septal �electrode

1� region of the hippocampus initially leads all other regions
�Fig. 4�a�, region a�. After the initial period of leading by the
septal electrode, the lead patterns switch and only intermit-
tent lag synchrony is achieved for the remaining duration of
the SLE �Fig. 4�a�, region b�. We refer to this epoch of the
SLE as the period of directional switching. These two peri-
ods �septal leading and directional switching� are observed in
each of 15 SLEs recorded from six hippocampi �Fig. 4�b��.
The duration of septal leading is 23.1±13.9 s, while the du-
ration of directional switching is 73.3±78.3 s per SLE.

III. PROPAGATION OF BURSTING IN COUPLED
NETWORKS OF INTEGRATE AND FIRE NEURONS

Our analysis of SLE recordings in the intact hippocampus
suggests that the recurrent bursting is divided into two dis-
tinct periods: septal leading and directional switching. Both
periods are characterized by lag synchrony of two distinct,
but coupled, neural populations. However, this temporal
variation in lag synchrony does not illuminate the underlying
changes in neural population dynamics throughout the SLE.

In order to further elucidate the dynamical mechanisms
underlying the observed temporal patterns, we build a heu-
ristic computational model capturing basic properties of the
experimental system. We assume that each region recorded
by a single electrode constitutes a local network �31–33�.
While hippocampal networks possess intricate patterns of
connectivity and many types of inhibitory interneurons es-
sential for information processing, here we are interested in
the gross features of bursting events and the importance of
broad measures of excitability to the origin and propagation
of bursting activity among local networks. The model is not
intended to capture details of the neurobiology underlying
SLE generation.

FIG. 3. Two-dimensional plot of Ĉj,i+ Ĉi,j vs Ĉj,i− Ĉi,j �arb.

units� for a representative SLE �black�. Values of Ĉi,j are paired

with their nearest temporal neighbors in Ĉj,i. Thresholds for Ĉ sum
and difference are set based on the distributions obtained from sur-
rogate data sets �gray�. Thresholds are set at the 95th percentile of

Ĉj,i+ Ĉi,j �horizontal line�, and the 2.5th and 97.5th percentiles of

Ĉj,i− Ĉi,j �vertical lines�. The intersections of these thresholds form
six sectors. In sector I, activity in i significantly leads activity in j,
while in sector III, activity in j significantly leads activity in i.
Events in other sectors are not significant.
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Therefore, our model includes only excitatory neural os-
cillators and a generalized connectivity pattern. We create
two interconnected networks �designated N1 and N2� of in-
tegrate and fire neurons with a small world network �SWN�
architecture, with each neuron positioned on a two-
dimensional 15�15 lattice with periodic boundary condi-
tions and uniform spacing between nodes. The SWN archi-
tecture �34� has been reported in neural structures, and has
been linked to seizure generation �35�.

SWN structure in each network is obtained by first con-
necting all neighbors in the lattice, and then randomly re-
moving or adding connections within a radius k=2 with a
rewiring probability of p=0.3 for each connection. This re-
sults in a network having an overall connectivity ratio of
0.05. Additionally, a randomly selected fraction �f =0.3� of
neurons in each network receives synaptic input from a ran-
domly chosen group of m=10 neurons from the other net-
work. The dynamics of each neuron are given by:

dVi

dt
= − �iV�t� + A �

j�C

Ji,j�t� + B�
k�I

Ji,k�t� + 	�t� �2�

where A=4 determines the intranetwork signal amplitude,
B=0.4 is the internetwork signal amplitude, �i� �1.0,1.5� is

the membrane leakage coefficient �different for every neuron
in the network�, and 	� �1.0,1.4� is a random variable simu-
lating white noise. C denotes the set of all neurons connected
to ith neuron via intranetwork connections, while I denotes
the neurons connected via internetwork connections. Ji,j is
the term describing synaptic current arriving from the jth
neuron:

Ji,j = exp�−
ts


s
	 − exp�−

ts


 f
	 �3�

where ts is the time from the last spike generated at the jth
neuron; 
s=0.3 ms and 
 f =0.03 ms are time constants.

When the threshold �spike=1 is reached, a spike is gener-
ated and the membrane potential is reset to 0. During a
built-in postspike refractory period T=10 ms, the membrane
does not potentiate in response to incoming stimuli. Every
neuron in both networks has an additional inhibitory mecha-
nism that resets the incoming synaptic current to zero if it is
below a threshold level ��cut�. Inclusion of this threshold
imposes a requirement for coincident input in spike genera-
tion. Therefore, when the value of �cut is high, the network is
relatively quiescent unless it receives coincident input to
many neurons. This parameter effectively controls the onset
of the bursting regime in the network. When �cut is high the
network activity is asynchronous �no bursting�. Conversely,
when �cut is low in a given network, the network enters a
regime of spontaneous bursting activity.

We use this model to study how the relative excitability of
N1 and N2 influence the spread of bursting activity between
the two networks. The parameters of the model �p, A, B, 	�
are set so that both networks are just outside a spontaneous
bursting regime, and entry into this regime is controlled by
�cut. At t=1 s �Fig. 5�a�, bottom� �cut is set to zero in N1,
shifting N1 into spontaneous bursting. The change in �cut,N1
is a phenomenological model of a transiently lowered firing
threshold, which could be due to multiple neurobiological
mechanisms.

Bursting in N1 is generated when sufficient numbers of
neurons spike simultaneously, generating a cascade effect.
Thus bursting in N1 is initially generated through intranet-
work dynamics following a delay after lowering �cut,N1. The
activity in N1, in turn, provides input to N2, resulting in
bursting activity in both networks. Bursting in N2 is there-
fore a result of synchronous, internetwork signaling, the pat-
tern of which is dictated by the internal dynamics of N1. In
this phase of the model seizure, when �cut,N1 is low, the
bursts of N1 lead those of N2 �Fig. 5�a�, black bar�. N1
bursts are also generally higher and narrower than N2 bursts,
indicating greater internal synchrony of N1.

At t=6 s �cut,N1 is reset to its original value. As a result,
the dynamics of the two-network system change dramati-
cally. Bursting activity is no longer autonomously generated
by an increased intrinsic excitability of neurons in N1.
Rather, it is transiently sustained by synaptic input from re-
sidual bursting generated during the epoch of �cut,N1=0.
Thus, the bursting dynamics of both networks are not pre-
dominantly mediated by the internal dynamics of N1, but by
internetwork feedback. In this phase, switching in temporal

FIG. 4. �a� Raster plots for a representative SLE showing times
of events pairs among adjacent electrodes �i , j�
� ��1,2� , �2,3� , �3,4�� with significant Ĉ sum and difference val-
ues; gray, septal electrode leads temporal; black, temporal electrode
leads septal. Electrode 1 is most septal, while electrode 4 is in the
most temporal position. The overall pattern of leading begins as
septal→ temporal �area a� and then enters an epoch of directional
switching �area b�. �b� Relative lengths of septal→ temporal phase
�area a� and postswitching phase �area b� in 15 SLEs recorded from
six hippocampi. Bars are aligned to the first directional switch.
Mean�standard deviation� duration of a=23.1 �13.9� s, b=73.3
�78.3� s.
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leading and internal synchrony is observed among the two
networks �Fig. 5�a�, gray bar�. Moreover, the instantaneous
rate of bursting in each network is inversely linked to the
size and coherence of the bursts generated by the other, con-
sistent with bursting sustained by internetwork interactions.
For example, a low-amplitude, diffuse burst in N1 will result
in weak activation of N2. This, in turn, leads to decreased
instantaneous frequency and gradual desynchronization of
N2. Due to the slowing of N2 bursts, N1 activity will tem-
porally lead bursting in N2—the less synchronous and
smaller bursts of one network will lead the more synchro-
nous bursts of the other until bursting ceases. Thus effec-
tively we observe that the network that has lower instanta-

neous internal synchrony of the burst leads that with higher
instantaneous frequency.

IV. DISTINGUISHING DYNAMIC STATES WITHIN LAG
SYNCHRONY

To quantify the above effect, we define �lead as the dura-
tion of an individual burst in the temporally leading network,
and �lag as the duration of the coincident burst in the tempo-
rally lagging network. Small values of � correspond to
higher degrees of internal synchrony in an individual net-
work, as the neurons discharge within a shorter time window.
The expectivity �E� of a burst is then defined as +1 if �lead

��lag, and −1 if �lead��lag. That is, E= +1 when the net-
work with greater internal synchrony leads the network with
less internal synchrony, and E=−1 if the opposite is true. We
thus link the relative properties of internal network dynamics
with the driving pattern between the two networks. We have
previously shown that an analogously defined measure of E
in a network of Hindmarsh-Rose neurons detects transitions
in the ordering of the network �30�.

To evaluate how E measures asymmetries in the excitabil-
ity of N1 and N2, we vary �cut,N2 while holding �cut,N1
=0.05 constant �Fig. 5�b��. For each pair ��cut,N1 ,�cut,N2�, the
model is integrated over 750 s. E is calculated for each co-
incident burst in the two networks, and the temporal average

E� calculated over the duration of the simulation. This is
repeated for ten different realizations of the randomized
SWN architecture described above.

When �cut,N2−�cut,N1 is small, both N1 and N2 are intrin-
sically excitable. Each network displays narrow bursts, and
each has an equal propensity to drive the other, leading to
large variations in E on a burst-to-burst basis �average E
�0, Figs. 5�b� and 5�c� regime b�. As N2 is made less ex-
citable, the narrow, synchronous bursts of N1 begin to drive
bursting activity in N2 �average E�0, Figs. 5�b� and 5�c�
regime a�.

In both cases above, at least one of the networks has an
intrinsic tendency to generate bursting activity. To study the
case in which neither N1 nor N2 possesses intranetwork dy-
namics leading to bursting activity, we first induce bursting
by transiently setting �cut,N1=0.05 until bursting activity is
established in both networks. We then set �cut,N1 and �cut,N2
such that both N1 and N2 are outside the spontaneous burst-
ing regime. E is then calculated for the bursts that occur after
this point until the disappearance of high-amplitude bursts.
In this case, gradually diminishing bursting activity in both
networks is due to the synaptic transmission of residual
bursts, not the intrinsic generation of bursts in N1 or N2
�average E�0, Fig. 5�c� regime c�.

The expectivity �E� thus discriminates three different re-
gimes of bursting activity: driving of N2 by N1, competition
between the two networks, and decay of bursting dynamics.
The driving regime is characterized by no lead switching
events and E�0, competition is characterized by rapid
switching and E�0, while the bursting decay is also charac-
terized by rapid switching but E�0.

In order to assess changes in the dynamical regime of a
bursting activity over time, E is calculated over multiple re-

FIG. 5. �a� Total synaptic activity from each network �arb.
units�. In the first phase of the model seizure, activity in N1 leads
activity in N2 �black bar�. In the second phase, switching occurs
and activity in N2 leads activity in N1 �gray bar�. Step function
denotes the period �t� �1,6�� when �cut,N1=0. �cut,N2=0.34
throughout. �b� Average expectivity �arb. units� as a function of the
difference in bursting thresholds in N1 and N2. �cut,N1=0.05, while
�cut,N2 varies in �0.05, 0.29�. �c� Expectivity distinguishes three
separate dynamical regimes, all of which display lag synchrony.
Regime a: Bursting thresholds of N1 and N2 are unequal, N1 drives
N2, and expectivity is positive ��cut,N1=0.05, �cut,N2=0.29�. Re-
gime b: Bursting thresholds of N1 and N2 are equal, N1 and N2
undergo sustained bursting with lead switching, and expectivity is
zero ��cut,N1=0.05, �cut,N2=0.05�. Regime c: Bursting thresholds of
N1 and N2 are equal, N1 and N2 display diminishing bursting with
lead switching, and expectivity is negative ��cut,N1=0.34, �cut,N2

=0.34�.
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alizations of the two-network system described above. As
shown in Fig. 4�b� the duration of bursting activity both be-
fore and after the onset of directional switching varies widely
among experimentally recorded SLEs. Modeled networks
also display bursting of variable duration after �cut,N1 is re-
stored �Fig. 5�a��. In order to facilitate comparison of the
dynamics of multiple experimental SLEs, each recording is
mapped to a normalized time basis. For both model and re-
corded SLEs, the epoch from the onset of lag-synchronous
activity to the onset of directional switching is mapped lin-
early to the interval t� �0,0.5� �Fig. 6�a� regime a�, while
the epoch from the onset of directional switching to the end
of bursting activity is mapped to t� �0.5,1.0� �Fig. 6�a� re-
gime b�. Values of E calculated on a burst-by-burst basis are
then linearly interpolated through time and averaged over
multiple SLEs.

A. Intra- and internetwork dynamics distinguish SLE states

In ten independent model realizations of the bursting dy-
namics of the type shown in Fig. 5�a�, changes in average E
through time conform to changes in �cut,N1. In the first period
of the model SLE, N1 drives N2 and E is positive �Fig. 6�b�

left�. When �cut,N1 and �cut,N2 are both high, the model SLE
enters a period of gradual dissolution of bursting, and E is
negative �Fig. 6�b� right�. This finding is consistent with the
transition from driving by intranetwork dynamics to bursting
sustained by internetwork feedback.

A similar analysis is performed for 45 comparisons of
activity in adjacent electrodes �15 SLEs, �i , j�
� ��1,2� , �2,3� , �3,4���. We observe that during the period of
septal leading �t�0.5�, E�0, as the electrode displaying
narrower bursts leads the pair �Fig. 6�c� left�. After the onset
of directional switching �t�0.5�, E�0, with wider bursts
leading �Fig. 6�b� right�. Thus, these findings support the
existence of a transition from the intranetwork dynamics of a
single region driving activity throughout the hippocampus to
bursting sustained by internetwork feedback, leading eventu-
ally to dissolution of bursting dynamics, as observed in our
model.

CONCLUSIONS

In summary, we have employed an adaptive measure of
lag synchrony �causal entropy C� to identify asymmetrical
patterns of lag synchrony in coincident bursting activity. We
apply the measure to characterize evolution of SLE activity
among four regions along the temporal-septal axis of the
hippocampus. We show that after the onset of coincident
activity across the hippocampus, activity measured in the
septal hippocampus leads the remainder of the hippocampus.
After a variable-duration period of septal leading, the lead
pattern switches to leading by a nonseptal electrode. We de-
fine the onset of directional switching as the demarcation
between two periods of the SLE.

Multiple groups have applied measures of nonlinear inter-
dependence to neural time series data recorded either from
models of epileptiform activity or epileptic patients �15,23�.
In contrast to methods which examine synchrony in neural
systems via the interdependence of analytic phases �8� or
state vector representations of two time series �3,23�, we ex-
amine two series of discrete events. This method is some-
what similar to event synchronization, as presented in Ref.
�13�, in which the authors examine depth electrode record-
ings from the hippocampus of an epileptic patient and also
report the occurrence of a directional switch during seizure
activity. Here, however, we concentrate on adaptive mea-
surement on lag stability as a indicator of lag synchrony
rather than the magnitude of the delay between the signals.

To further understand the bursting regimes we use a com-
putational model of two coupled small world networks and
examine the implications of the onset of directional switch-
ing for the dynamical underpinnings of the SLE. By combin-
ing information about temporal leading �C�, with informa-
tion about the internal synchrony of each individual network
�burst duration�, we define expectivity �E�. Using a compu-
tational model, we show that E discriminates at least three
distinct lag-synchronous regimes in the dynamical interrela-
tionship of two coupled networks. When bursting activity
propagates from an excitable network to a network whose
excitability is below a bursting threshold, E�0. When bursts
are exchanged between two equally excitable networks, E

FIG. 6. �a� Illustration of time normalization procedure. �b� Av-
erage of expectivity �arb. units� among ten model seizures. Left of
dashed vertical line: �cut=0.0. Time from bursting onset to direc-
tional switching is normalized to �0, 0.5�, and time from switching
to end of bursting is normalized to �0.5, 1.0�. Vertical line: onset of
switching. �c� Average �black�±SEM �gray� of expectivity �arb.
units� among 45 electrode pairs �15 SLEs, �i , j�
� ��1,2� , �2,3� , �3,4���. Time from SLE onset to switching is nor-
malized to �0, 0.5�, and time from switching to SLE end is normal-
ized to �0.5, 1.0�. Vertical line: onset of switching.
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�0. Finally, when neither network’s excitability rises above
the threshold for bursting, but bursts are present due to re-
sidual excitation, E�0.

Based on the comparison of E measured from computa-
tional and hippocampal SLEs, we suggest that the onset of
directional switching marks the abrupt transition between
two dynamical states of the SLE. In the septal leading pe-
riod, E�0, indicating that SLE behavior is dictated by the
intranetwork dynamics of a localized region of the hippoc-
ampus. Conversely, E�0, in the directional switching pe-
riod, indicating that bursting behavior is sustained by inter-
network feedback among distant but coupled neuronal
populations, which eventually leads to desynchronization.

This analysis demonstrates that conditional entropy effec-
tively discriminates the dynamic states of a complex neural
system. Although this analysis has focused on the bursting
dynamics of seizurelike events in a model of epilepsy, the
measures C and E could easily be extended to relate lag-
synchrony patterns with other parameters describing autono-
mous characteristics of two time series. The methods could

therefore be applied to discrete event data in a variety of
neural systems. Comparing a measure of internetwork inter-
action with a measure of individual network behavior pro-
duces insight into the genesis of the transition between
states. These results illustrate how superficially homoge-
neous behavior across loosely coupled networks may harbor
hidden, but robust, dynamical processes.
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